Developmental regulation of plasticity in the forepaw representation of ferret somatosensory cortex.

نویسندگان

  • Debra F McLaughlin
  • Sharon L Juliano
چکیده

This study characterized the spatiotemporal responses in ferret somatosensory cortex after sensory deprivation at different phases of cortical development. We hypothesized that cortical responses to stimulation of intact superficial radial nerve in adults will vary systematically according to maturation of thalamocortical relationships at the time of an ulnar nerve transection. Depending on the age of the animal at the time of the lesion, we found differential effects on the spatial distribution of the short- and long-latency components of the cortical response. In animals lesioned at postnatal days 5-7, when thalamic projections are not yet stabilized and layer 4 is not yet formed, we found that initial (short-latency) cortical responses are widespread and fragmented. Ulnar nerve transections performed at postnatal day 20 or 21, when thalamocortical afferents are more stabilized and layer 4 is clearly identifiable, yield moderate expansions in the distribution of short- and long-latency components of the cortical response. Nerve lesions in adults lead to a wider distribution of long-latency cortical activity. Neonatal lesions broaden the spatial distribution and increase the latency of the initial cortical response; interruption of nerve input in older juveniles alters both the early and later components; and nerve lesions in adult animals expand the distribution of later cortical activity only. These findings demonstrate correlation between developmental phase at the time sensory input is interrupted and the latency of affected components of the cortical response. This supports the hypothesis that differential response changes are regulated by functional reorganization of thalamocortical connections after neonatal lesions and alteration of corticocortical dynamics after adult lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats

Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...

متن کامل

Cortical involvement in the induction, but not expression, of thalamic plasticity.

The present study examined the role of the somatosensory cortex in the plasticity of thalamic sensory maps. Thalamic plasticity was induced by the disruption of hindlimb input by unilateral destruction of nucleus gracilis. Unilateral somatosensory cortex lesions were performed either on the same day as or a week after the removal of hindlimb input. Multiple electrode penetrations enabled us to ...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Mapping plasticity in the forepaw digit barrel subfield of rat brains using functional MRI

The topographic organization of the forepaw barrel subfield in layer IV of rat primary somatosensory cortex (S1) is a good model for studying neural function and plasticity. The goal of this study was to test the feasibility of functional MRI (fMRI) to map the forepaw digit representations in the S1 of the rat and its plasticity after digit amputation. Three dimensional echo-planar imaging with...

متن کامل

Plasticity of Local-Circuit Constraint Properties During Functional Reorganization of Adult Cortex Author: Paullus,

The primary somatosensory cortex (SI) is topographically organized into a map of the body. This organization is dynamic, undergoing experience-dependent modifications throughout life. It has been hypothesized that excitatory and inhibitory synaptic plasticity of horizontal intracortical connections contributes to functional reorganization. However, very little is known about synaptic plasticity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2003